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ABSTRACT

The purpose of this project was to perform measurements of the thermal energy
received by aircraft positioned at various distances from nuclear detonations. Measure-
ments were to be made to study the contribution of thermal radiation reflected from the
earth's surface to the total radiation received by the airoraft. Ninety-degree-field-of-
view calorimeters and radiometers were used to record the thermal radiation under two

_conditions: (1) calorimeters and radiometers oriented to include radiation received di-
rectly from the fireball and (2) calorimcters and radiometers oriented to receive ground-
reflected radiation from the earth's surface directly below the test aircraft. Total spec-
trum and broad-band spectral measurements were made in each case. An ancillary phase
»f this project was to obtain the temperature rise and decay from thermal radiation in air-
craft skin specimens both exposed to and shielded against the effects of aerodynamic cool~
ing.

Recorded total thermal energy data for the two situations above based on 12 aireraft
test positions are reported herein, together with an experimental check on existing theo-
retical treatments. Aleo reported are thermal energies recorded under broad-band filters
and related tempen&re data of aircraft skin samples exposed to and shielded against the
free airstream. .

It is concluded that: 41) the theoretical values for the reflected radiation are compa-
rable within 10 percent to theexperimental values; the contribution of atmospheric scat-
tered radiation cannot be neglected and in the case where fine particles of matter (ike
dust) exist in the vicinity of the explosion, the contribution of the scattered radiation in-
creases; §§) random scatter in ground-reflected energy measurements under broad band
filters prevent the establishment of & ground-reflected to direct-energy spectral distri-
bution ratto; and @) aerodynamic cooling had no appreciable effect on the temperature in
exposed skin specimens at indicated airspeeds of 175 knots insofar as reducing the maxi-
mum temperature rise of 175 degrees Fahrenheit attained by similar specimens shielded
from the airstream.

It is recommend& that: (1) analytical data for predicting the ratio of ground-reflected
to direct radiation be considered valid provided proper allowance is made for atmospheric
attenuation and scattering; (2) an experimental check of analytical data be made for weapons
exceeding 43-kiloton total yield to further evaluate ground and atmospheric reflection, at-
tenuation, and scattering effects; (3) a further evaluation be made of the effects of surface
coating damage to aircraft skin temperatures when thermal field pulse inputs reported
herein are utilized in lieu of rectangular pulses.

3

SECRETY



FOREWORD

This is one of the reports presenting the results of the 56 projects participating in
the Military Effects Tests Program of Operation TEAPOT, which included 14 test detona~
tions. For readers interested in other pertinent test information, reference is made to
WT=-1158, ""Summary Report of the Technical Director, " Military Effects Program.

This summary report includes the following information of possible general interest:

(1) an overall description of each detonation, including yield, height of burst, ground
zero location, time of detonation, ambient atmospheric conditions at detonation, etc.,
for the 14 shots; (2) discussion of all project results; (3) a summary of each project, in~
cluding objeotives and results; and (4) a complete listing of all reports covering the
Military Effects Tests Program.

PREFACE

The test program reported herein was successfully acoomplished through the com-
bined efforts of many individuals, both military and civilian, representing many differ-
ent agencies. Although individual acknowledgments cannot be made here, the following
is a list of the organizations who contributed to the suocess of this program: Bureau of
Aeronautics of the Navy; Directorate of Weapons Effects Tests, Armed Forces Special
Weapons Project; Naval Air Special Weapons Facility; Naval Air Missile Test Center;
Naval Radiological Defense Laboratory; Douglas Aircraft Company, Inc., El S8egundo
Division; Naval Ordnance Test Station; Air Force Cambridge Research Center; Wright
Afr Development Center; and Air Force Special Weapons Center.

4
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Chapter |
INTRODUGTION

1.1 GENERAL

Thermal radiation is one of the primary effects produced by a nuclear detonation.
Thermal radiation becomes the prime consideration for some aircraft weapon systems
in the determination of criteria for safe delivery of nuclear weapons when the yield ex-
ceeds about 30 kilotons, and definitely becomes a more important factor for high yield
weapons. Therefore, it is necessary to determine the various factors which constitute
the spatial and temporal variation of thermal radiation and the mechanism by which the
thermal radiation produces a resultant temperature increase in aircraft components.

The basic factors are: (1) the quantity of thermal radjation produced as a function
of yield, (2) the time dependence of thermal emiasion, (3) spectral distribution, (4) the
scattered and reflected radiation which augments the direct radiation, and (5) the atmos-
pheric attenuation of the radiation. To date much data has been accumulated in References
1and 2 The total thermal energy produced for an air burst is given by Y (cal) =
0.44 10'2W*-% where W is the total yield in kilotons. The radiant power consists of two
maxima where the time to the second g, = 0.032 WY? where ty o, i8 in seconds when W
is expressed in kilotons. For surface bursts and near surface bursts the quantity and
time-picture is incomplete until an air burst in the megaton range is performed for com-
parative purposes. In Reference 3, the effect of the distorted fireball on thermal yield
is discussed. However, more knowledge of the spectral and spatial distributions, particu~
larly in the infrared region during the second pulse for all conditions of burat, was ne~
cessary. This information was required to determine (1) the reflection coefficient of the
ground surface, since this coefficient has a spectral dependence, and (2) the absorption
coefficient of the aircraft skin surface. Much data has been available on the spectral dis-
tribution of direct radiation; however, no data was available on the reflected radiation.
Some data had been accumulated on the scattered radiation and attenuation (see Reference
4 and its bibliography), but considerable work still remained. No complete experimental
program had been executed on reflected radiation from a nuclear detonation. To limit
the effort and fill the largest gap, this program was undertaken.

The only extensive theoretical predictions for reflected radiation for a homogeneous
absorbing but nonscattering atmosphere were available in Reference 5; however, recent
calculations with greater numerical accuracy have been performed at the National Bureau
of Standards, using the 8. E.A.C. computer under Armed Forces Special Weapons Project
sponsorship, and at the Douglas Aircraft Corporation on the IBM MK~701 computer. The
latter two are self-consistent. In all instances a point source was assumed along with an
infinite reflecting plane obeying Lambert's law. These particular caloulations were for
the cass of a 2r steradian receiver oriented parallel to the reflecting plane. Additional
calculations were also performed by the Douglas Aircraft Corporation for the specific
cases of interest here. These were: (1) 950-degree-field-of-view receiver oriented to-
ward the fireball and (2) 90~degree-field-of-view receiver with surface of the sensing ele~
ment parallel to the earth's surface. These calculations were required to determine the
degree of validity of the theoretical predictions.

SECRET
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1.2 PROJECT OBJECTIVES

The specific objectives of this project were:

1. To study the direct and ground-reflected components of thermal radiation by
measuring that radiation received at different points in space relative to the burst by means
of 90-degree~-field-of-view calorimeters aimed directly at the fireball and ground directly
below the test aircraft. These measurements were required as an experimental check on
the analytical data contained in Reference 5. These analytical data have been used as one
of the bases for establishing effects envelopes for the safety of atomic weapon delivery tac-
tics employed by the Fleet. These criteria are contained in Reference 6.

2. 8ince the reflected radiation may have a spectral dependence different from the
direct radiation as a consequence of selective absorption by the reflaction plane, measure-
ments on the spectral composition of both the direct and reflected components as re-
corded by 90-degree-field-of-view calorimeters aimed directly at the fireball and the
ground below the test aircraft were performed.

3. To obtain time-histories of the temperature rise and decay in aircraft skin speci-
mens, exposed to and shielded against the effects of aerodynamic cooling. These data
are required to supplement similar data obtained by Project 5.1 during Operation
UPSHOT-KNOTHOLE.

10
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Chapter 2
EXPERIMENT DESIGN

2.1 BACKGROUND AND THEORY

2.1.1 Thermal Radiation. Aircraft flying in the vicinity of an atomic explosion are
subjected to the following major weapon effects: gamma radiation, thermal radiation,
gust loading, and shock overpressure. These effects are of primary significance in the
establishment of techniques and procedures to be utilized in the delivery of atomic
weapons.

The test result obtained by Project 5.1 during UPSHOT~-KNOTHOLE (Reference 7)
clearly demonstrated that as much as 40 percent of the total thermal radiation received
by aircraft in flight was due to ground reflection of the incident radiation. Similar dawa
have also been obtained during other experimental tests (Reference 2). In order to es-
tablish reliable thermal effects criteria, the amount of reflected thermal radiation to be
received at various points in space about the burst center under different conditions must
be predictable within reasonable limits. Analytical procedures and methods for accom-
plishing this have already been developed (Reference 5). The data have been utilized as
one of the bases for establishing the thermal radiation effects criteria as included in the
present U. 8. Navy Effects Handbook (Reference 6). All the effects criteria and guides
governing the safety of atomic weapon delivery tactics employed by the fleet are con-
tained in this handbook.

As presented in Reference 6, the radiant energy (direct and reflected) received in
space, assuming a nonscattering homogeneous atmosphere, is given by the expression:

Wih [1 + Ezr/Ezd] cosi (e 2R
E-= -4 (2.1)
47R?
Where: = total energy in cal/cm?

Wih = thermal source in calories
cos'i = cosine of angle between radius vector for source to
recefver and the normal to the receiver

a = atmospheric attenuation coefficient
R = slant range distance in centimeters

Ez_ = ground reflected energy from an infinite plane
r

Rz‘1 = direct energy normal to receiving surface

The bracketed expression represents the increase to the direct radiation due to re-
flection, provided the appropriate value for Egr/Ezd, which is & function of the orienta-
tion of the receiver, is available. In the event that the receiver is parallel to the ground
and has a 2-steradian field of view, generalized curves are available in Reference §
which permit the determination of the theoretical values of 87! (E; /Eq), where 3 is the
surface reflection coefficient for all spatial locations of interest. For the particular
burst heights employed here, namely 300 and 500 feet, the individual curves are shown
in Figures 2.1 and 2.2. The ratio Ez,/Eq is then obtained directly by multiplying by the

11
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appropriate value of 8 for the particular reflecting surface under consideration. Some
typical values of 3 are given in Reference 6, pages 3~18 and 3-17. The reader is re-
ferred to Reference 5 for the theoretical development of reflected radiation received by
a receiver parallel to an infinite reflecting plane and also when normal to the radius vec-
tor through the source.

2.1.2 Temperature Rise in Aircraft Skin Panels. Measurements of the maximum
temperature rise attained to date in the metal skin of the test aircraft were made by Pro-
juct 5.1 during UPSHOT-KNOTHOLE. The majority of such measurements were made
using passive type thermal indicators (temperature tapes). A limited number of time-
histories of the temperature rise in skin specimens were obtained using temperature
gages. The data obtained from these measurements are contained in Reference 7. In
general, the application of temperature tapes exhibited definite limitations, and the data
obtained could not be consistently correlated with measured thermal inputs and visible
thermal damage. Additional skin panel temperature-time data are required to supple-
ment the data previously obtained before a complete evaluation and correlation of all data
can be made.

As presented in Reference 8, the maximum temperature rige in aircraft metal skin
exposed to thermal radiation, without cooling, is given by:

YE
Ty = TA) = —— 2.2
Ty = Ta) oGt 2.2)
Where: T = maximum allowable skin temperature (*F)
Ta = ambient air temperature (°F)
E = thermal input as defined by Equation 2.1
p = specific density of material
Cp specific heat of material
t
14

thickness of material (ft.)
thermal absorption coefficient (non-
dimensional)

Considering the effects of aerodynamic cooling the maximum temperature rise is
given by:

FyE
Tag = = cmmtmmm— .
(Tm = TA) 2Cat (2.3)

where F is the convective cooling factor dependent upon air speed, altitude and time of
irradiance of the receiver. (See Reference 6 for a complete discussion).

2.1.3 Bpectral Composition of Direct and Reflected Radiation. Information is re~
quired concerning the spectral composition of the reflected component of thermal radia-
tion to ascertain which (if any) wave lengths of bands of the spectrum are absorbed by the
reflecting surface. By comparison with the spectral composition of the direct radiation,
certain portions of the spectrum may be shown to have a direct relationship to the thermal
damage experienced by different type surface finishes.

2.2 TEST PROCEDURES AND CONDITIONS

Three instrumented model AD type aircraft, Figure 2.3, participated in Shots 4, 6,
8, 12, and 13 of Operation TEAPOT. One of the three AD aircraft served primarily as a
standby aircraft, except during Shots 8 and 12 when records were obtained with all three

14
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Figure 2.3 AD-4B, AD-6, and AD-5 Test Aircraft.

Figure 2.4 Pilot's Protective Thermal Hood.

15
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Figure 2.5 Modified APS-19 Radar Nacelle with Instrumentation Installed.

aircraft. During each shot, test aircraft were flown at approximately 175 knots indicated
air speed (1A8) in counter-clockwise orbits about ground zero, initiating standard-rate
break-away turns after detonations. Utilizing a thermal hood over the cockpit, Figure
2.4, and special goggles for pilot's protection against thermal radiation, one or two test
aircraft were monitored by M8Q-1 ground radar control and instrument flight rules.
Since M8Q-1 control was only available for one or two aircraft, when two or three test
airoraft participated, the third and at times the second aircraft flew formation on the
monitored aircraft with visual flight rules exoept for the period of the initial flash during
which time the thermal hood was in place and instrument flight rules prevailed. Each
aircraft was assigned to fly at a different altitude and horizontal range (radius of orbit)
from ground zero. At T—-20 seconds the instrumentation recording equipment in each
aircraft was turned on by the pilot. At approximately T+2 seconds the pilot executed a
standard rate turn to the outsids of the orbit in order to receive the subsequent shock
wave in & near "tail-on™ position. Each aircraft was instrumented to measure and re-
cord the following data at time zero: (1) the direct and reflected components of thermal
radiation received at the aircraft position in space, (2) the time-history of the tempera-
ture rise in exposed aircraft skin specimens, and (8) the spectral composition of the
direct and reflected components of thermal radiation.

16
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The aircraft test positions for each of the shots are shown in Figure 2.2. Test po-
sitions were selected which would give the maximum possible distribution of data points
with respect to the burst center. From such data experimental check Ezr/Ezd curves
similar to those shown on Figures 2.1 and 2.2 could be made.

2.3 INSTRUMENTATION

2.3.1 General Arrangement. Each test aircraft was equipped to carry a modified
APS-~19 radar nacelle which was mounted on the underside of the port wing on the wing
bomb rack, as shown in Figure 2.5. All radar gear was removed from the nacelle. The
nacelle, or tank, was modified to carry all the instrumentation measuring and recording
equipment. During tests, all equipment was turned on by means of a switch in the cock-
pit of the aircraft. The instrumented nacelles could be readily installed or removed from
the test aircraft for maintenance, servicing, or repair of test equipment.

Essentially, two similar sets or banks of measuring instruments were carried in
each tank. Each set or bank of instruments consisted of four Naval Radiological Defense
Laboratory (NRDL) disc-type calorimeters and one NRDL foil-type radiometer, six air-
craft skin-panel temperature specimens, and two 16-mm gun-sight-aiming-point (GBAP)
gun cameras. Each bank of instruments was mounted in the tank in such a manner that,
as the test aircraft flew in a circular orbit (counterclockwise) about ground zero, one
bank looked at the burst point and the other bank looked at the ground immediately below
the test aircraft. The position of each bank of instruments in the tank could be adjusted
on the ground to maintain the above reference, depending upon the planned position of the
aircraft for the particular test.

2.3.2 Instrumentation Equipment. NRDL disk-type calorimeters and foil-type
radiometers having a 90-degree field of view were used for measuring thermal radiation.
Quartz filters, having a transmissivity of 92 percent, were used on two calorimeters and
one radiometer of each bank of instruments for measurements of total radiation. Yellow,
and red filters having a transmissivity of 90 and 88 percent, respectively, were used on
the other two calorimeters for spectral measurements. Sixteen-millimeter GSAP gun
cameras were also used to photograph and check the alignment and field of view of the
calorimeters during the test and to provide a basis for correcting calorimeter data
readings which were "off target."

Thermocouples attached to the aft side of aluminum skin specimens (1%, ~inch
diameter specimens, 0.018 inch thick, having various surface finishes) were used for
obtaining temperature-time histories. On some tests the surfaces of these specimens
were exposed to the airstream; on some other tests, quartz filters were used to shield
the specimens against airstream cooling effects.

A further description of the instrumentation is presented in Reference 8.

17
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Chapter 3
RESULTS

Direct and ground-reflected calorimeter, radiometer, and skin sample temperature
time-history recordings were obtained for 12 different test positions during Operation
TEAPOT. A summary of peak recordings with aircraft test poeitions during Shots 4, 6,
8, 12, and 13 is presented in Table 3.1. Typical time-history plots for each of the above
parameters are presented in Figures 3.1 to 3.4. All direct and ground-reflected record-
ings were incident on sensing elements of 90-degree-field-of-view calorimeters and ra-
diometers. Aircraft positioning data shown in Table 3.1 were determined from M8Q~-1
radar plot board data.

3.1 CALORIMETER DATA

Calorimeter data were read directly from oscillograph records by means of a tele-
reader. Proper thermal and electric calibration constants, calorimeter disk heat loss
and filter transmissivity corrections were applied. Gun camera records of fireball and
ground directly below test aircraft showed that aiming corrections to recorded values
was unnecessary. Calorimeter data recorded by oscillograph Channels 4 and 7 repre~
sent total direct and ground-reflected energies under clear quartz filter, while data re-
corded by Channels 5 and 8 represent energies under yellow (3-69) and red (2-58)
Corning filters. Respective spectral ranges for these filters were 2,200-45,000;
5,300~-25,000; and 6,400—25,000 A as shown in Reference 2.

3.2 RADIOMETER DATA

Radiometer data were reduced by the same method applied to calorimeter data,
except no heat loss correction was applied. Oscillograph Channel 6 recorded irradiance
under clear quartz filter. Peak values and time to second maximum are presented in
Table 3.1.

3.3 SKIN SAMPLE TEMPERATURE DATA

Skin sample temperature data were reduced by the same method applied to radiom-
eter data. Oscillograph Channels 1, 2, and 3 recorded temperatures of bare, white,
and blue painted 1¥~inch-diameter, 0.016~-inch-thick aluminum skin samples exposed
to the airstream. Channels 10, 11, and 12 recorded temperatures of the same skin
samples, respectively, but shielded against the airstream by clear quarte filters. Maxi-
mum recorded temperatures in all skin samples (both exposed to and shielded against the
free airstream) are shown in Table 3.1 for all test conditions. Typical time-histories of
temperature rise and decay in exposed and shielded skin samples are shown in Figures
3.3 and 3.4.
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TABLE 3.1 SUMMARY OF DIRECT AND GROUND REFLECTED DATA

TEAPOT Event ot 4 ot § Shot §
Date of Test 7 Maroh 1988 23 March 1985 30 March 1988
Yiold XT) (TS B 81103 18e8
Htom a) ) ) (4) () )
Tost Alrcraft AD-8 AD-43 AD-5 AD-8 AD-5 AD-4B
Buresu Number 134012 132288 133800 14019 133800 183388
Alreraft Altitude (oot MSL) 13,800 20,000 11,500 19,000 16,000 16.000
Aircraft Altitude above Burst Heet) 8,510 18,000 6,758 14,386 11,000 11,190
Alroraft Nortsostal Renge tieet) 16,000 13,300 8,028 0,500 11.600 11.000
Aircraft Slant Rangs (feet) 19.000 19,980 13,300 10.000 16,450 16 108
Alroraft Positioniag Method Navy AT M8Q _Navy MBQ AF M0Q M | _FormoaAD-S
Maximum direct and ground refiected calorime- ,05';.‘ CGround Grewmd Ground Ground Ground
gr_rwonmcri‘:n‘m tomp. Diroot | Reflest | Direct | Refieot | Divect | Reflset Direct | Reflect | Direct | Reflect | Direct |RefSlect
__Diske _| Mo | Units
Calorimeter | (4} |eal/cm! “19 | 033 0| s | 213 083 1.0 | 088 | 32¢ ) 1.1 | 208 | 1.e¢
Calorimeter | (1) |oal/om® 84 | 038 88| 31 | 3er o3 | 313 | Les | 1es | 1L:1 313 | 1m
Calorimeter | (8) | oal/om? 208 | 0.9 8.05) 288 | 1M 000 | 096 { o7y [ 197 | 108 | 188 | 118
Calorimeter | (8) | oal/em! 130 | o030 38 184 | LM 042 (Mode| 088 | 104 | o | 133 | 102
Radiometer | (6) |cal/om’/esc./Cloar Quarts (98) | 5.90 [Modesl.| 585 397 | s.08 017|238 | 107 | 288 | 168 | 209 | 2M2

| @ lese o.s12| ~- ol o33 | o118 oass| 0218 0318) e23 | o033 | 29 | 038
Bere Slin ‘ a) ] °F. 2 »n [0 ui 137 {176 |ModeS) 22 113 |Nedell.[17.5
WhiteBkin | @) , °T. 16 e [ » 83 2.0 148 e (18 [EXTNE 'K R PV |
Blus Sun & [ °F “ s 100 7.1 383 (444 (349 Joos | a2 ws [
BareSia | (10)| °F “e 183 | ] s 140 |210 (361 (256 (183 (402 |m2
White S (11) ! *T. 1.8 L ERE ] 358 [ Nedel. |18.0 63 (185 |NodeR. 129 116
BeeBia | an| °F loar Quarts (93) [103.5 | 32.8 | 134.8 |18 7% 4 M8 [0 | 300 s (18
TEAPOT Event ot 13
Dats of Temt § May 1988
Yield (XT)
Tem [J]
Test Aircraft AD-¢
Buresy Nember 14613
Afrcraft Altitude tfeet MSL) 19,000
Asrcraf Altttude shove Burst toet) 14,190
Adreraft Norizomtal Raage (feet) 18,100
Alrcraft Siast Reage (leet) 2,150
Alrcralt L Az
E e T e T =
tor, , and Slin Somp. Sessurements. w

T
Dinks No.  Unite misstviy - :

Galorimewar 8 o= 7] 1ot 016 saa| aw|
Calorimeter (7) eal/em’ ClesrQurtag) | 110 | 003 490 | 372
Calorimeter (5) oal/em’ Yollow3-69 (90) | ¢78 | 060 | 304 | AV
Calorimeter (3) onl/em' Ned 250 M0) ModeR.. 086 | 244 | 280!
Radtometer ®6) oal/em’/ese. CloarQuarta (93)| 157 | 102 | 188 ( 648

€) ooe Timewose. max.| 0233 | 0.30 ' 0108 020
Bare Skin Q °r Nowe nit [X] [ “
White Bkin )] ‘r Noae 13.8 [ 3] [ ] 4
Blus Bhin @ °F Nawe 71 | Me 148 2410
Berefia 0% °F Clear Quarts (#8) | 19.7 | 10.0 LYY
White Sida 1)  °F. Clear Quartz (08) | 16.3 .2 YR
Blue Skin as  °r ClearQuarts 73) [ 665 [ 361 1840 |1328

19

SECRET




irradiance, col / cm®/sec

X = Chonnel 4 (Querts)
= As » ? (Querts)
O u $(3-89)
D " 8 (2-88)
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Figure 3.1 Energy-versus-Time Curve, Shot 12, AD-~5.
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Figure 3.2 Irradiance-versus-Time Curves, Shot 12, AD-8.
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Figure 3.8 Skin Temperature Time Histories, Shot 123, AD-8, Direct.
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Figure 3.4 Skin Temperature Time Histories, Shot 12, AD-5, Ground-Reflected.
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Chapter 4
DISCUSSION

4.1 EXPERIMENTAL CHECK ON ANALYTICAL DATA

4.1.1 QGeneral. The analytical approach to the problem of the quantity of reflected
radiation received by a detector considered a nonscattering, nonabsorbing atmosphere
where the reflecting plane was infinite in extent. The experiment conducted here ob-
viously did not satisfy this ideal model and therefore the reduction of the data entailed
considerable analysis. Specifically, the reflected radiation received by the instrumen=-
tation installed to observe direct radiation had to be subtracted, and conversely, the so-
called indirect instrumentation at times received direct radiation. In either case, only
finite areas of the reflecting plane were observed. Also, the observations were made in
a real atmosphere where attenuation and acattering existed, thus requiring suitable cor-
rections for these factors. The method of data reduction and results are presented below.

4.1.2 Data Reduction Procedure. The total energy received by an airborne receiv-
er with a solid angle larger than the solid angle subtended by the fireball will consist of
direct, reflected, and scattered radiation, where the contribution of each to the total
will differ with spatial location and aiming direction. Here the aiming directions were
either (1)through air zero (direct)or (2) normal to ground (indirect). Each case will now
be considered.

1. Direct Radiation. The radiation measured on the direct calorimeter, Eqy,, can
be defined by the expression:

Er E.
Egm = Eg* l*ﬁﬂk*‘-ﬁ;‘ 4.1)

Where: E4* = contribution of the radiation emitted by the
fireball proper
E, = total reflected radiation
Eg4 = scattered radiation
Eq = direct radiation in vacuo defined by Wy, /4xR?
R = slant range
x = attenuation correction to the reflected radiation

The value of 8 for the Nevada Proving Grounds has been determined to be 0.40. The
value for « has been approximated in the follow.ng fashion. The atmospheric transmis-
sivity for the participating shots were given as 95 percent per nautioal mile, and the av-

erage ratio of length of the path transversed by the rays of the reflected to the direct
radiation is approximately 1.5, hence:

E, (0.95) E, v Er
cnmra— = o— (0, §5)7 W = e .
Eq (0:95)" Eq (©-99) Eq “.2)
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where n is the slant range in miles. Replacing x by its value in Equation (4.2), we can
write (4.1) as

E, osn E,
Egm = Egq* J1+0.40 -ﬁ:'l- (0.96)"°" + E-d_* (4.3)
To determine E4*, the computed values of E./Ej were employed where

E!‘ Ezr Err

e = = CO8{ + == 8in i (4.4)
Eg Eg Eq

The numerical values of E,,./Eq4 and E;./Eq for each shot are given in Figures 4.1 to 4.12.
Egy and Epp are the vertical and horizontal reflected energy components, respectively,
and "i" the angle of incidence of the direct radiation to indirect calorimeter. (See dia-
grams).

Direct Calorimeter Indirect Golorimeter

Ed IEzd‘Ed cos 4
Ell’

The values for Ey/E4* are computed in Reference 9 for a 47 receiver and single scatter-
ing. However, fleld-of~view measurements d.ring the past several operations indicate
that all but 10 percent of the total energy is received by & 80-degree-field-of-view de-
tector. With this correction, the values of Eg/E4* for slant ranges considered are 0.05
to 0.07. To simplify the data reduction, a fixed value of 0.05 was taken. On substitution
of the appropriate values into the bracketed expression, the value of E4* was obtained,
and on dividing E4* by the direct transmissivity (0.95)" the in vacuo value of the direct
radiation Eq was obtained.

2. Indirect Radiation. In a similar manner the radiation illuminating the indirect
calorimeter can be expressed as:

Ed.

The above symbols have been defined previously. To determine E;pnq, the values of E4*
found above were employed and the analytical values of E;,./E4 in Figures 4.1 to 4.12.
For close-in stations where the indirect calorimeter included the fireball, a fixed value
of Eg/E4* = 0.05 was taken. For the further-out station where E4* decreased, the value
of Eg/E4* became larger, since E, was unaffected. Finally, when the indirect oalorim-
eter did not include the fireball and the direct radiation was large, the contributions from
scattering would tend to increase the fractions. Considerable scattering in dust-laden air
at the quite low airoraft altitudes apparently was received by the calorimeter. In this
instance the value of E;/E4* = 0.15 £ 0.05. For this analysis a fixed value of 0.15 was
assumed. The cos { term was dropped, sinoe the normal component of direct radiation
received by the indirect calorimeter was considered nil.
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4.1.3 Correlation of Data. With the method outlined in 4.1.2 for direct radiation,
the values of E4* corrected for attenuation were determined and compared with the value
of Wy, /47R? in Figure 4.13. In view of the good overall agreement and the small effect
of scattered radiaiion, it is reasonable to conclude that the ansalytical approach to deter-
mine the contribution of reflected radiation yields values acourate to about £10 percent.
By the method outlined in 4.1.2 for indirect radiation, the calculated indirect energy,
Eind. expected at receivers was determined and compared with the measured indirect
energy, Eprm, values in Figure 4.14. A summary of data used to derive Figures 4.13
and 4.14 is presented in the Appendix. If the above conclusion is correct concerning re-
flected radiation, then it follows that in the case where the reflected contribution is small,
& good approximation for the scattered radiation is obtained. It should be noted that in
Reference 9 a similar analysis of thermal data obtained during Operation CASTLE has
given good correlation between predicted and measured values.

4.2 RECORDED THERMAL DATA

Figure 4.15 presents a comparison of recorded data with data of Reference 2. Ex-
cept for Shot 12, Item Numbers 8 and 9, Table 3.1, where fireball distortion may have
appeared, data agreement is fairly good. Some error in slant range distance may be

TABLE 4.1 PERCENT OF TOTAL DIRECT AND GROUND-REYLECTED FILTERED ENERGIES
Percent of Total Ene

ot 4 ot 6 L) Tyt
Fiter | Spectral Range AD-¢ AD-5 AD-5 AD-8 AD-4B
Type of AD-4B AD-g AD-4B AD-5 AD-8
Transoussion AD-6 AD-4B
& Dir Rel | Dir Refl | Dir Refl | Dir  Rell | Dir  Red
Quartz 2300-45,000 | 100 100 | 100 100 | 100 100 | 100 100 | 100 100
3-69 5,300 - 25,000 73 91 100° | 7 P 7 13 e

] .
ki ] [ 4] 4 [} 3 o o7 T4 67 100°
69 (LT £ 70*

2-58 6,400 -35,000 | 62 91 | 62 99 | 51 [ ) ) 59 es°
[ 6 | — o7 8 % | e 38 T T
LA R L

*Horizonially distant test positions (15 perceat atmospheric scattering).

present. MBSQ controlled and formation aircraft are estimated to be within + 300 feet
and + 800 feet horizontal distance from fireball, respectively. Figures 4.16 to 4.20 pre-
sent normalized irradiance curves for all test conditions based on recorded radiometer
time histories. Purely for information purposes, these curves from each shot are com-
pared with a normalized fleld pulse of Reference 1.

4.3 SPECTRAL ENERGY DISTRIBUTION

Speotral energy measurements for the twelve test positions reported herein showed
considershle random scatter in reflected~energy data. This is apparent in Table 4.1,
where measured ground-reflected and direct energies under full spectrum clear Corning
quartz filters are assumed as 100 percent. Relative to the 100 percent transmissivity
for clear quartz, the ground-reflected energies for the same intensities under broad
band 3-89 and 2-58 Corning filters were 100 to 70 percent and 80 to 38 percent, respec~
tively. Similarly, direct energies were 84 to 64 percent and 83 to 47 peroent, respec-
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tively. The indicated large random scatter in reflected-energy values prevent the estab-
lishment of a ground-reflected to direct energy spectral distribution ratio. Previously
discussed phenomena related to atmospheric scattering and the effects of 80-degree-
field-of-view calorimeter recordings of ground-reflected energies from finite areas at
various test stations may suggest & contributing factor to this random scatter.

4.4 TEMPERATURE DATA

Figures 4.21 and 4.22 present plots of peak bare, white, and blue skin sample tem-
peratures from Table 8.1. Approximately the same linear variation for shielded and un-
shielded temperature data in Figure 4.21 and 4.22, respectively, exist when plotted ver-
sus radiant energies. Surface finishes were undamaged up to maximum temperatures
recorded. Checking these data against Figure 4.23 shows approximate absorbitivity co-
efficients for bare, white, and blue painted aluminum skin samples as 0.19, 0.14, and
0.45, respectively. This corresponds to 0.40, 0.20, and 0.60 in Reference 6. In a check
on temperature rise times slant range versus total yield (Figures 4.24 and 4.25), a linear
relationship also exists for bare, whits, and blue painted aluminum skin samples, shielded
and unshielded. As in Figure 4.15, and perhaps due to fireball distortion, Shot 12 points
do not coincide with faired curves.
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Chapter 5
CONCLUSIONS AND RECOMMENDATIONS

5.1 CONCLUSIONS

8.1.1 Experimental Check on Analytical Data. The theoretical values for the re~
flected radiation are, within 10 percent, comparable to the experimental values.

The contribution of atmospheric scattered radiation cannot be neglected and, in the
case where fine particulate matter (like dust) exists in the vicinity of the explosion, the
contribution of the scattered radiation increases.

5.1.2 Spectral Energy Distribution. Random scatter in ground-reflected energy
measurements under broad-band filters (perhaps due to variation in the finite areas sub~
tended by 90~-degree-field-of-view indirect calorimeters at various test stations and re-
lated atmospheric scattering) prevents the establishment of a ground-reflected to direct
energy epectral distribution ratio.

$.1.3 Temperature Data. Absorptivity coefficients from recorded data and data of
Reference 6 show fair agreement for bare, white, and blue painted aluminum skin samples.
Skin samples, exposed to and shielded against the airstreams show insignificant reduction
in skin temperatures due to aerodynamic cooling. A maximum temperature rise of 175
degrees Fahrenheit was recorded at approximately 175 knots IAS. No apparent surface
coating damages were observed.

5.1.4 Operational SBuccess. All recording equipment performed in a satisfactory
manner. Operational procedures and utilization of a thermal hood for pilot's protection
against thermal radiation proved very satisfactory.

5.2 RECOMMENDATIONS

5.2.1 Thermal Data. It is recommended that analytical data for predicting ground-
reflected thermal energy contributions to direct radiation be considered valid as a basis
for use in the establishment of thermal effects envelopes for nuclear weapons. This re-
commendation is based on the assumption that proper allowance is made for ground-
reflected and direct atmospheric attenuated and scattered energies.

It is further recommended that an experimental check of analytical data be made for
weapons exceeding 43-kiloton total yield to further evaluate ground and atmospheric re-
flection, attenuation, and scattering effects. Utilization of 180-degree ~field-of-view
calorimeters and radiometers should be considered in this connection.

5.2.2 Temperature Data. It is recommended that a laboratory study be made of
the effects of surface coating damage on the tomperature rise and decay in aircraft skin
samples utilizing field pulse inputs presented in this report in lieu of current rectangu~
lar pulse inputs.
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Appendix

TABLE A.1 BUMMARY OF DIRECT ENERGY DATA COMPUTATIONS

SHOT TABLE 3.1 ‘,B'r‘,h Wy
NO. ITEMNO. B4 T Eq* Eg4° (0.95)" Eq(in vacuo) wr
4 1 419 1+ 0.329 + 0.05 = 1.3M s.14 0.833 3.77 3.68
3.54 1.68 s.18
3 397 1 - 0.527 + 0.06 = 1.577 2.52 0.029 3.04 3.48
3.8 2.42 2.93
s s 213 1+ 0423 + 0.05 = 1.473 1.48 0.897 1.0 2.10
2.07 1.41 1.87
4 1.5 1+ 057 + 008 = 1.62 0.773 0.95 0.908 0.94
112 0.691 0.813
[] 5 234 1+ 049 + 005 = 1.4 i.46 0.852 n L7
1.88 1.30 1.41
[} 206 1+ 047 + 0.05 = 1.53 1.9 0.8% 1.3 1.88
213 1.40 1.68
7 1.07 1+ 040 4 0.08 = 1.83 0.70 0.018 0.858 1.1
1.10 0.72 0.8
13 ] 542 1 ¢ 0.54¢ + 0.05 = 1.592 3.40 0.882 EX Y 33
490 3.08 387
[ 601 1 ¢+ 0538 + 0.05 = 1.508 3.00 0.268 .39 3.40
5.08 3.20 .00
10 1.7 1 + 0445 + 0.08 = 1.498 1.14 0.802 1.42 1.48
1.91 1.28 1.0
13 11 440 1+ 0.302 + 0.05 = 1.353 3.28 0.am 3.1 Y]
4.16 3.08 3.5¢
12 294 1+ 0433 + 0.05 = 1.483 1.97 0.032 2.37 2.50
3.9 102 310

TABLE A.2 SUMMARY OF GROUND-REFLECTED ENERGY DATA COMPUTATIONS

SHOT TABLE 3.1 Egp K
NO. ITEMNO.  Eg° [°°" TEEg ?:'-] i Eem
s 1 314 0 + 00089 + 015 - 0.1589 08 0.9
2.68 042 0.3
2 252 0776 + 0410 + 0.05 = 1.23 312 318
2.42 3.00 2.10
3 s 145 0 +00M8 + 015 = 0.1848  0.27 0.83
14 0.2 0.3
s 0.772 0848 + 049  + 005 = 1.308 1.07 083
0.691 0.96 1.08
. 5 146 0710 + 0388 + 005 ~ 1148 1.08 L4
1.20 1.38 131
s 130 0694 + 021  + 0.05 = 0.954 1.3 1.44
1.40 1.4 1.3
? 0.0 0.7% + 0.332 + 0.05 - 1.002 0.70 0.7
0.7 0.72 0.03
12 . 340 0.705 + 0439  + 0.05 = 1.364 % 3.3
s.00 3.90 an
’ 380 0972 + 0416 + 0.05 = 1.857 410 “n
.20 3.9 310
10 114 0+ 0.00751 + 0.15 = 01675  0.18 0.28
1.2 0.20 0.3
13 n 335 0+ 00101 + 015 = 0.6 0.3 0.48
3.0 0.49 0.87
12 197 0+ 00388 o+ 0.15 = 01785 0.3 0.6
1.0 0.3 0.3
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